MATH 320 NOTES, WEEK 4

Section 1.6 Bases and Dimension cont'd Recall:

Definition 1. Suppose that $\beta \subset V$, for a vector space V. We say that β is a basis for V iff

- (1) $Span(\beta) = V$,
- (2) β is linearly independent.

Next we want to define **the dimension** of a vector space V. The dimension of V will be the size of a basis for V. But for this notion to be well defined, we need two things:

- (1) each vector space has a basis, and
- (2) if β, γ are two bases for V, then they have the same size.

The next theorem addresses the first point.

Theorem 2. Suppose that V is a vector space and $S \subset V$ is a finite set such that span(S) = V. Then V has a finite basis β with $\beta \subset S$.

Proof. If $S = \emptyset$, then $V = \{\vec{0}\}$, so \emptyset is a basis. So suppose that S is nonempty.

We prove the theorem by induction on |S|, i.e. the size of S. For the base case, if |S| = 1, then $S = \{v\}$, and we have two cases:

- (1) if $v = \vec{0}$, then $V = \{0\}$ and \emptyset is a basis.
- (2) if $v \neq 0$, then $\{v\}$ is linearly independent and spans V. It follows that $\{v\}$ is a basis.

Now suppose that |S| = n + 1, for some n > 0 and the theorem is true for n: i.e. if a vector space W is such that span(T) = W and |T| = n, then W has a basis contained in T.

Let $v \in S$ be nonzero (such a vector exists since S has at least two vectors). Let $T = S \setminus \{v\}$. Let W = span(T). By the inductive hypothesis W has a basis $\beta \subset T$. We have two cases.

- (1) if $v \in span(T)$, then $W = span(T) = span(T \cup \{v\}) = span(S) = V$ and β is a basis for V.
- (2) if $v \notin span(T)$, then $v \notin span(\beta)$, and so by an earlier theorem $\beta \cup \{v\}$ is linearly independent. Let $\beta' = \beta \cup \{v\}$. Then β' is linearly independent. Also $span(\beta') = span(\beta \cup \{v\}) = span(T \cup \{v\}) = span(S) = V$. The second equality is since $span(\beta) = span(T)$. It follows that β' is a basis for V.

1

Example In \mathbb{R}^2 , the set $S = \{(1,1), (1,2), (3,-3)\}$ generates \mathbb{R}^2 , and $\{(1,1), (1,2)\}$ is a basis for \mathbb{R}^2 .

Some vector spaces need an infinite set for a basis, for example P(F). Using Zorn's Lemma, one can prove that every vector space has a basis (not only spaces generated by finite sets):

Theorem 3. Let V be a vector space. Then there is a basis for V.

Proof. (Informal) Look at the family of *all* linearly independent subsets L of V. Call this family \mathcal{L} . Using Zorn's Lemma, we can take a maximal element of \mathcal{L} i.e. a linearly independent set β , such that for every vector $x \in V$, if $x \notin \beta$, then $\beta \subset \{x\}$ is not linearly independent. Then β is a basis. The hardest part of the proof is to show that \mathcal{L} satisfies the requirements of Zorn's lemma.

Theorem 4. (Replacement theorem) Let V be a vector space, and $G, L \subset V$ be such that:

(1) span(G) = V and |G| = n,

(2) L is linearly independent, and |L| = m.

Then $m \leq n$, and there is $H \subset G$ with |H| = n - m, such that $span(L \cup H) = V$.

Proof. By induction on m.

Base case: m = 0. Then clearly $m \le n$ and n - m = n, so we can take H = G.

Inductive case: suppose that L = m + 1 and the theorem is true for m. I.e. the inductive hypothesis is that if L' is a linearly independent set of size m, then $m \leq n$ and there is $H' \subset G$ such that $H' \cup L'$ generates V and |H'| = n - m.

Let $v \in L$, and set $L' = L \setminus \{v\}$. Then L' is linearly independent and |L'| = m, and so by the inductive hypothesis, $m \leq n$ and let $H' \subset G$ be such that $H' \cup L'$ generates V and |H'| = n - m.

First we will show that $m + 1 \leq n$. Since L is linearly independent, we know that $v \notin span(L')$. On the other hand $v \in span(L' \cup H') = V$. It follows that H' is nonempty, i.e. that n - m > 0. So $m + 1 \leq n$.

Next, we have to *replace* one of the vectors in H' with v.

Denote $H' = \{u_1, ..., u_{n-m}\}$ and $L' = \{v_1, ..., v_m\}$. Since $v \in span(H' \cup L')$, there are scalars $a_1, ..., a_m, b_1, ..., b_{n-m}$ such that

 $v = a_1v_1 + a_2v_2 + \dots + a_mv_m + b_1u_1 + \dots + b_{n-m}u_{n-m}.$

Since $v \notin span(L')$, it must be that at least one of the b_i 's is nonzero. By rearranging the *u*'s if necessary, we may assume that $b_1 \neq 0$. Then from the above equation we can solve for u_1 . In particular,

 $b_1u_1 = v - a_1v_1 - a_2v_2 + \dots - a_mv_m - b_2u_2 - \dots - b_{n-m}u_{n-m},$

 \mathbf{SO}

$$u_1 = \frac{1}{b_1}v - \frac{a_1}{b_1}v_1 - \dots - \frac{a_m}{b_1}v_m - \frac{b_2}{b_1}u_2 + \dots - \frac{b_{n-m}}{b_1}u_{n-m}$$

 $\mathbf{2}$

Hence, $u_1 \in span(L \cup \{u_2, ..., u_{n-m}\})$.

Set $H = \{u_2, ..., u_{n-m}\}$. Then |H| = n - m - 1, and $span(L \cup H) =$ $span(L \cup \{u_1, u_2, ..., u_{n-m}\}) = span(L \cup H')$. Then last equality is by the fact that $u_1 \in span(L \cup H)$.

It follows that $span(L \cup H) = span(L \cup H') \supset span(L' \cup H') = V$. So $span(L \cup H) = V.$

As a corollary, we can show that any two finite bases for the same vector space have the same number of vectors.

Corollary 5. Suppose that V is a vector space and β, γ are two finite bases for V. Then $|\beta| = |\gamma|$.

Proof. Apply the Replacement theorem for $G = \beta$ and $L = \gamma$, to get that $|\beta| = |G| \ge |L| = |\gamma|.$

Next, by the Replacement theorem applied for $G = \gamma$ and $L = \beta$, we get that $|\gamma| = |G| \ge |L| = |\beta|$.

So $|\beta| = |\gamma|$.

Remark 6. It also true that any two infinite bases have the same size. For example, any basis for P(F) is *countable*, i.e. you can put it in a one-to-one correspondence with the natural numbers. On the other hand any basis for the vector space of functions $\mathcal{F}(\mathbb{R},\mathbb{R})$ is uncountable.

Here we omit these proofs.

So, now we have that the definition of dimension is well-defined:

 $\dim(V) = |\beta|$, where β is a basis for V.

We say that V is **finite dimensional** if $\dim(V)$ is finite. Otherwise V is infinite dimensional.

Examples:

- (1) \mathbb{R}^3 over \mathbb{R} has dimension 3;
- (2) F^n over F has dimension n;
- (3) $M_{k,n}(F)$ over F has dimension kn;
- (4) $P_n(F)$ over F has dimension n+1;
- (5) P(F) is infinite dimensional.
- (6) $\mathcal{F}(\mathbb{R},\mathbb{R})$ is infinite dimensional;
- (7) \mathbb{R}^3 over \mathbb{Q} is infinite dimensional so note that the choice of field matters.

And now for the other payoff of the replacement theorem:

Corollary 7. Suppose that V is vector space and $\dim(V) = n$. Then

- (1) Any generating set contains a basis.
- (2) If β spans V and $|\beta| = n$, then β is a basis.
- (3) Any linearly independent set L can be extended to a basis.
- (4) If β is linearly independent and $|\beta| = n$, then L is a basis.

Proof. We already proved (1) in an earlier theorem.

(2). By (1), there is $\alpha \subset \beta$, such that α is a basis for V. Since dim(V) = n, $|\alpha| = n$. But then $\alpha = \beta$ (since they have the same finite size and $\alpha \subset \beta$).

(3). Suppose that L is linearly independent. Let α be a basis for V. Then $|\alpha| = n$ and $|L| = m \leq n$. By the Replacement theorem applied to L and $G = \alpha$, there is a set $H \subset \alpha$, such that $span(L \cup H) = V$, and $|L \cup H| = n$. By (2), $L \cup H$ is a basis for V.

(4). Suppose that β is linearly independent of size n. By (3), β can be extended to a basis α for V. But then $|\alpha| = |\beta| = n$ and $\beta \subset \alpha$. Then $\beta = \alpha$.

Let us summarize: If V is a vector space with dimension n and $\beta \subset V$ has size n. Then TFAE:

(1) β is a basis;

(2) β is linearly independent;

(3) $span(\beta) = V$.

That means that when you prove that a set is a basis, after checking that it has the right number of vectors, it is enough to prove that it is linearly independent, or to prove that it generates the vector space.

4