MATH 320 NOTES, WEEK 4

Section 1.6 Bases and Dimension cont'd

Recall:
Definition 1. Suppose that $\beta \subset V$, for a vector space V. We say that β is a basis for V iff
(1) $\operatorname{Span}(\beta)=V$,
(2) β is linearly independent.

Next we want to define the dimension of a vector space V. The dimension of V will be the size of a basis for V. But for this notion to be well defined, we need two things:
(1) each vector space has a basis, and
(2) if β, γ are two bases for V, then they have the same size.

The next theorem addresses the first point.
Theorem 2. Suppose that V is a vector space and $S \subset V$ is a finite set such that $\operatorname{span}(S)=V$. Then V has a finite basis β with $\beta \subset S$.

Proof. If $S=\emptyset$, then $V=\{\overrightarrow{0}\}$, so \emptyset is a basis. So suppose that S is nonempty.

We prove the theorem by induction on $|S|$, i.e. the size of S. For the base case, if $|S|=1$, then $S=\{v\}$, and we have two cases:
(1) if $v=\overrightarrow{0}$, then $V=\{0\}$ and \emptyset is a basis.
(2) if $v \neq 0$, then $\{v\}$ is linearly independent and spans V. It follows that $\{v\}$ is a basis.
Now suppose that $|S|=n+1$, for some $n>0$ and the theorem is true for n : i.e. if a vector space W is such that $\operatorname{span}(T)=W$ and $|T|=n$, then W has a basis contained in T.

Let $v \in S$ be nonzero (such a vector exists since S has at least two vectors). Let $T=S \backslash\{v\}$. Let $W=\operatorname{span}(T)$. By the inductive hypothesis W has a basis $\beta \subset T$. We have two cases.
(1) if $v \in \operatorname{span}(T)$, then $W=\operatorname{span}(T)=\operatorname{span}(T \cup\{v\})=\operatorname{span}(S)=V$ and β is a basis for V.
(2) if $v \notin \operatorname{span}(T)$, then $v \notin \operatorname{span}(\beta)$, and so by an earlier theorem $\beta \cup\{v\}$ is linearly independent. Let $\beta^{\prime}=\beta \cup\{v\}$. Then β^{\prime} is linearly independent. Also $\operatorname{span}\left(\beta^{\prime}\right)=\operatorname{span}(\beta \cup\{v\})=\operatorname{span}(T \cup\{v\})=$ $\operatorname{span}(S)=V$. The second equality is since $\operatorname{span}(\beta)=\operatorname{span}(T)$. It follows that β^{\prime} is a basis for V.

Example In \mathbb{R}^{2}, the set $S=\{(1,1),(1,2),(3,-3)\}$ generates \mathbb{R}^{2}, and $\{(1,1),(1,2)\}$ is a basis for \mathbb{R}^{2}.

Some vector spaces need an infinite set for a basis, for example $P(F)$. Using Zorn's Lemma, one can prove that every vector space has a basis (not only spaces generated by finite sets):
Theorem 3. Let V be a vector space. Then there is a basis for V.
Proof. (Informal) Look at the family of all linearly independent subsets L of V. Call this family \mathcal{L}. Using Zorn's Lemma, we can take a maximal element of \mathcal{L} i.e. a linearly independent set β, such that for every vector $x \in V$, if $x \notin \beta$, then $\beta \subset\{x\}$ is not linearly independent. Then β is a basis. The hardest part of the proof is to show that \mathcal{L} satisfies the requirements of Zorn's lemma.

Theorem 4. (Replacement theorem) Let V be a vector space, and $G, L \subset V$ be such that:
(1) $\operatorname{span}(G)=V$ and $|G|=n$,
(2) L is linearly independent, and $|L|=m$.

Then $m \leq n$, and there is $H \subset G$ with $|H|=n-m$, such that $\operatorname{span}(L \cup H)=$ V.

Proof. By induction on m.
Base case: $m=0$. Then clearly $m \leq n$ and $n-m=n$, so we can take $H=G$.

Inductive case: suppose that $L=m+1$ and the theorem is true for m. I.e. the inductive hypothesis is that if L^{\prime} is a linearly independent set of size m, then $m \leq n$ and there is $H^{\prime} \subset G$ such that $H^{\prime} \cup L^{\prime}$ generates V and $\left|H^{\prime}\right|=n-m$.

Let $v \in L$, and set $L^{\prime}=L \backslash\{v\}$. Then L^{\prime} is linearly independent and $\left|L^{\prime}\right|=m$, and so by the inductive hypothesis, $m \leq n$ and let $H^{\prime} \subset G$ be such that $H^{\prime} \cup L^{\prime}$ generates V and $\left|H^{\prime}\right|=n-m$.

First we will show that $m+1 \leq n$. Since L is linearly independent, we know that $v \notin \operatorname{span}\left(L^{\prime}\right)$. On the other hand $v \in \operatorname{span}\left(L^{\prime} \cup H^{\prime}\right)=V$. It follows that H^{\prime} is nonempty, i.e. that $n-m>0$. So $m+1 \leq n$.

Next, we have to replace one of the vectors in H^{\prime} with v.
Denote $H^{\prime}=\left\{u_{1}, \ldots, u_{n-m}\right\}$ and $L^{\prime}=\left\{v_{1}, \ldots, v_{m}\right\}$. Since $v \in \operatorname{span}\left(H^{\prime} \cup\right.$ L^{\prime}), there are scalars $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n-m}$ such that

$$
v=a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{m} v_{m}+b_{1} u_{1}+\ldots+b_{n-m} u_{n-m}
$$

Since $v \notin \operatorname{span}\left(L^{\prime}\right)$, it must be that at least one of the b_{i} 's is nonzero. By rearranging the u 's if necessary, we may assume that $b_{1} \neq 0$. Then from the above equation we can solve for u_{1}. In particular,

$$
b_{1} u_{1}=v-a_{1} v_{1}-a_{2} v_{2}+\ldots-a_{m} v_{m}-b_{2} u_{2}-\ldots-b_{n-m} u_{n-m},
$$

so

$$
u_{1}=\frac{1}{b_{1}} v-\frac{a_{1}}{b_{1}} v_{1}-\ldots-\frac{a_{m}}{b_{1}} v_{m}-\frac{b_{2}}{b_{1}} u_{2}+\ldots-\frac{b_{n-m}}{b_{1}} u_{n-m}
$$

Hence, $u_{1} \in \operatorname{span}\left(L \cup\left\{u_{2}, \ldots, u_{n-m}\right\}\right)$.
Set $H=\left\{u_{2}, \ldots, u_{n-m}\right\}$. Then $|H|=n-m-1$, and $\operatorname{span}(L \cup H)=$ $\operatorname{span}\left(L \cup\left\{u_{1}, u_{2}, \ldots, u_{n-m}\right\}\right)=\operatorname{span}\left(L \cup H^{\prime}\right)$. Then last equality is by the fact that $u_{1} \in \operatorname{span}(L \cup H)$.

It follows that $\operatorname{span}(L \cup H)=\operatorname{span}\left(L \cup H^{\prime}\right) \supset \operatorname{span}\left(L^{\prime} \cup H^{\prime}\right)=V$. So $\operatorname{span}(L \cup H)=V$.

As a corollary, we can show that any two finite bases for the same vector space have the same number of vectors.

Corollary 5. Suppose that V is a vector space and β, γ are two finite bases for V. Then $|\beta|=|\gamma|$.

Proof. Apply the Replacement theorem for $G=\beta$ and $L=\gamma$, to get that $|\beta|=|G| \geq|L|=|\gamma|$.

Next, by the Replacement theorem applied for $G=\gamma$ and $L=\beta$, we get that $|\gamma|=|G| \geq|L|=|\beta|$.

So $|\beta|=|\gamma|$.
Remark 6. It also true that any two infinite bases have the same size. For example, any basis for $P(F)$ is countable, i.e. you can put it in a one-to-one correspondence with the natural numbers. On the other hand any basis for the vector space of functions $\mathcal{F}(\mathbb{R}, \mathbb{R})$ is uncountable.

Here we omit these proofs.
So, now we have that the definition of dimension is well-defined:

$$
\operatorname{dim}(V)=|\beta|, \text { where } \beta \text { is a basis for } V
$$

We say that V is finite dimensional if $\operatorname{dim}(V)$ is finite. Otherwise V is infinite dimensional.

Examples:
(1) \mathbb{R}^{3} over \mathbb{R} has dimension 3 ;
(2) F^{n} over F has dimension n;
(3) $M_{k, n}(F)$ over F has dimension $k n$;
(4) $P_{n}(F)$ over F has dimension $n+1$;
(5) $P(F)$ is infinite dimensional.
(6) $\mathcal{F}(\mathbb{R}, \mathbb{R})$ is infinite dimensional;
(7) \mathbb{R}^{3} over \mathbb{Q} is infinite dimensional - so note that the choice of field matters.
And now for the other payoff of the replacement theorem:
Corollary 7. Suppose that V is vector space and $\operatorname{dim}(V)=n$. Then
(1) Any generating set contains a basis.
(2) If β spans V and $|\beta|=n$, then β is a basis.
(3) Any linearly independent set L can be extended to a basis.
(4) If β is linearly independent and $|\beta|=n$, then L is a basis.

Proof. We already proved (1) in an earlier theorem.
(2). By (1), there is $\alpha \subset \beta$, such that α is a basis for V. Since $\operatorname{dim}(V)=n$, $|\alpha|=n$. But then $\alpha=\beta$ (since they have the same finite size and $\alpha \subset \beta$).
(3). Suppose that L is linearly independent. Let α be a basis for V. Then $|\alpha|=n$ and $|L|=m \leq n$. By the Replacement theorem applied to L and $G=\alpha$, there is a set $H \subset \alpha$, such that $\operatorname{span}(L \cup H)=V$, and $|L \cup H|=n$. By (2), $L \cup H$ is a basis for V.
(4). Suppose that β is linearly independent of size n. By (3), β can be extended to a basis α for V. But then $|\alpha|=|\beta|=n$ and $\beta \subset \alpha$. Then $\beta=\alpha$.

Let us summarize: If V is a vector space with dimension n and $\beta \subset V$ has size n. Then TFAE:
(1) β is a basis;
(2) β is linearly independent;
(3) $\operatorname{span}(\beta)=V$.

That means that when you prove that a set is a basis, after checking that it has the right number of vectors, it is enough to prove that it is linearly independent, or to prove that it generates the vector space.

