
MATH 320 NOTES, WEEK 4

Section 1.6 Bases and Dimension cont’d
Recall:

Definition 1. Suppose that β ⊂ V , for a vector space V . We say that β is
a basis for V iff

(1) Span(β) = V ,
(2) β is linearly independent.

Next we want to define the dimension of a vector space V . The dimen-
sion of V will be the size of a basis for V . But for this notion to be well
defined, we need two things:

(1) each vector space has a basis, and
(2) if β, γ are two bases for V , then they have the same size.

The next theorem addresses the first point.

Theorem 2. Suppose that V is a vector space and S ⊂ V is a finite set
such that span(S) = V . Then V has a finite basis β with β ⊂ S.

Proof. If S = ∅, then V = {~0}, so ∅ is a basis. So suppose that S is
nonempty.

We prove the theorem by induction on |S|, i.e. the size of S. For the base
case, if |S| = 1, then S = {v}, and we have two cases:

(1) if v = ~0, then V = {0} and ∅ is a basis.
(2) if v 6= 0, then {v} is linearly independent and spans V . It follows

that {v} is a basis.

Now suppose that |S| = n + 1, for some n > 0 and the theorem is true for
n: i.e. if a vector space W is such that span(T ) = W and |T | = n, then W
has a basis contained in T .

Let v ∈ S be nonzero (such a vector exists since S has at least two
vectors). Let T = S \ {v}. Let W = span(T ). By the inductive hypothesis
W has a basis β ⊂ T . We have two cases.

(1) if v ∈ span(T ), then W = span(T ) = span(T ∪{v}) = span(S) = V
and β is a basis for V .

(2) if v /∈ span(T ), then v /∈ span(β), and so by an earlier theorem
β∪{v} is linearly independent. Let β′ = β∪{v}. Then β′ is linearly
independent. Also span(β′) = span(β ∪ {v}) = span(T ∪ {v}) =
span(S) = V . The second equality is since span(β) = span(T ). It
follows that β′ is a basis for V .
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Example In R2, the set S = {(1, 1), (1, 2), (3,−3)} generates R2, and
{(1, 1), (1, 2)} is a basis for R2.

Some vector spaces need an infinite set for a basis, for example P (F ).
Using Zorn’s Lemma, one can prove that every vector space has a basis (not
only spaces generated by finite sets):

Theorem 3. Let V be a vector space. Then there is a basis for V .

Proof. (Informal) Look at the family of all linearly independent subsets L
of V . Call this family L. Using Zorn’s Lemma, we can take a maximal
element of L i.e. a linearly independent set β, such that for every vector
x ∈ V , if x /∈ β, then β ⊂ {x} is not linearly independent. Then β is a basis.
The hardest part of the proof is to show that L satisfies the requirements of
Zorn’s lemma. �

Theorem 4. (Replacement theorem) Let V be a vector space, and G,L ⊂ V
be such that:

(1) span(G) = V and |G| = n,
(2) L is linearly independent, and |L| = m.

Then m ≤ n, and there is H ⊂ G with |H| = n−m, such that span(L∪H) =
V .

Proof. By induction on m.
Base case: m = 0. Then clearly m ≤ n and n −m = n, so we can take

H = G.
Inductive case: suppose that L = m + 1 and the theorem is true for m.

I.e. the inductive hypothesis is that if L′ is a linearly independent set of
size m, then m ≤ n and there is H ′ ⊂ G such that H ′ ∪L′ generates V and
|H ′| = n−m.

Let v ∈ L, and set L′ = L \ {v}. Then L′ is linearly independent and
|L′| = m, and so by the inductive hypothesis, m ≤ n and let H ′ ⊂ G be
such that H ′ ∪ L′ generates V and |H ′| = n−m.

First we will show that m + 1 ≤ n. Since L is linearly independent, we
know that v /∈ span(L′). On the other hand v ∈ span(L′ ∪ H ′) = V . It
follows that H ′ is nonempty, i.e. that n−m > 0. So m+ 1 ≤ n.

Next, we have to replace one of the vectors in H ′ with v.
Denote H ′ = {u1, ..., un−m} and L′ = {v1, ..., vm}. Since v ∈ span(H ′ ∪

L′), there are scalars a1, ..., am, b1, ..., bn−m such that

v = a1v1 + a2v2 + ...+ amvm + b1u1 + ...+ bn−mun−m.

Since v /∈ span(L′), it must be that at least one of the bi’s is nonzero. By
rearranging the u’s if necessary, we may assume that b1 6= 0. Then from the
above equation we can solve for u1. In particular,

b1u1 = v − a1v1 − a2v2 + ...− amvm − b2u2 − ...− bn−mun−m,
so

u1 =
1

b1
v − a1

b1
v1 − ...−

am
b1
vm −

b2
b1
u2 + ...− bn−m

b1
un−m.
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Hence, u1 ∈ span(L ∪ {u2, ..., un−m}).
Set H = {u2, ..., un−m}. Then |H| = n − m − 1, and span(L ∪ H) =

span(L ∪ {u1, u2, ..., un−m}) = span(L ∪ H ′). Then last equality is by the
fact that u1 ∈ span(L ∪H).

It follows that span(L ∪ H) = span(L ∪ H ′) ⊃ span(L′ ∪ H ′) = V . So
span(L ∪H) = V .

�

As a corollary, we can show that any two finite bases for the same vector
space have the same number of vectors.

Corollary 5. Suppose that V is a vector space and β, γ are two finite bases
for V . Then |β| = |γ|.

Proof. Apply the Replacement theorem for G = β and L = γ, to get that
|β| = |G| ≥ |L| = |γ|.

Next, by the Replacement theorem applied for G = γ and L = β, we get
that |γ| = |G| ≥ |L| = |β|.

So |β| = |γ|. �

Remark 6. It also true that any two infinite bases have the same size. For
example, any basis for P (F ) is countable, i.e. you can put it in a one-to-one
correspondence with the natural numbers. On the other hand any basis for
the vector space of functions F(R,R) is uncountable.

Here we omit these proofs.

So, now we have that the definition of dimension is well-defined:

dim(V ) = |β|, where β is a basis for V.

We say that V is finite dimensional if dim(V ) is finite. Otherwise V is
infinite dimensional.

Examples:

(1) R3 over R has dimension 3;
(2) Fn over F has dimension n;
(3) Mk,n(F ) over F has dimension kn;
(4) Pn(F ) over F has dimension n+ 1;
(5) P (F ) is infinite dimensional.
(6) F(R,R) is infinite dimensional;
(7) R3 over Q is infinite dimensional – so note that the choice of field

matters.

And now for the other payoff of the replacement theorem:

Corollary 7. Suppose that V is vector space and dim(V ) = n. Then

(1) Any generating set contains a basis.
(2) If β spans V and |β| = n, then β is a basis.
(3) Any linearly independent set L can be extended to a basis.
(4) If β is linearly independent and |β| = n, then L is a basis.
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Proof. We already proved (1) in an earlier theorem.
(2). By (1), there is α ⊂ β, such that α is a basis for V . Since dim(V ) = n,

|α| = n. But then α = β (since they have the same finite size and α ⊂ β).
(3). Suppose that L is linearly independent. Let α be a basis for V . Then

|α| = n and |L| = m ≤ n. By the Replacement theorem applied to L and
G = α, there is a set H ⊂ α, such that span(L ∪H) = V , and |L ∪H| = n.
By (2), L ∪H is a basis for V .

(4). Suppose that β is linearly independent of size n. By (3), β can be
extended to a basis α for V . But then |α| = |β| = n and β ⊂ α. Then
β = α.

�

Let us summarize: If V is a vector space with dimension n and β ⊂ V
has size n. Then TFAE:

(1) β is a basis;
(2) β is linearly independent;
(3) span(β) = V .

That means that when you prove that a set is a basis, after checking that
it has the right number of vectors, it is enough to prove that it is linearly
independent, or to prove that it generates the vector space.


